logo

CVE-2021-29584 tensorflow

Package

Manager: pip
Name: tensorflow
Vulnerable Version: >=0 <2.1.4 || >=2.2.0 <2.2.3 || >=2.3.0 <2.3.3 || >=2.4.0 <2.4.2

Severity

Level: Low

CVSS v3.1: CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L

CVSS v4.0: CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N

EPSS: 0.00011 pctl0.01008

Details

CHECK-fail due to integer overflow ### Impact An attacker can trigger a denial of service via a `CHECK`-fail in caused by an integer overflow in constructing a new tensor shape: ```python import tensorflow as tf input_layer = 2**60-1 sparse_data = tf.raw_ops.SparseSplit( split_dim=1, indices=[(0, 0), (0, 1), (0, 2), (4, 3), (5, 0), (5, 1)], values=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0], shape=(input_layer, input_layer), num_split=2, name=None ) ``` This is because the [implementation](https://github.com/tensorflow/tensorflow/blob/0908c2f2397c099338b901b067f6495a5b96760b/tensorflow/core/kernels/sparse_split_op.cc#L66-L70) builds a dense shape without checking that the dimensions would not result in overflow: ```cc sparse::SparseTensor sparse_tensor; OP_REQUIRES_OK(context, sparse::SparseTensor::Create( input_indices, input_values, TensorShape(input_shape.vec<int64>()), &sparse_tensor)); ``` The [`TensorShape` constructor](https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when [`InitDims`](https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. ```cc template <class Shape> TensorShapeBase<Shape>::TensorShapeBase(gtl::ArraySlice<int64> dim_sizes) { set_tag(REP16); set_data_type(DT_INVALID); TF_CHECK_OK(InitDims(dim_sizes)); } ``` In our scenario, this occurs when adding a dimension from the argument results in overflow: ```cc template <class Shape> Status TensorShapeBase<Shape>::InitDims(gtl::ArraySlice<int64> dim_sizes) { ... Status status = Status::OK(); for (int64 s : dim_sizes) { status.Update(AddDimWithStatus(internal::SubtleMustCopy(s))); if (!status.ok()) { return status; } } } template <class Shape> Status TensorShapeBase<Shape>::AddDimWithStatus(int64 size) { ... int64 new_num_elements; if (kIsPartial && (num_elements() < 0 || size < 0)) { new_num_elements = -1; } else { new_num_elements = MultiplyWithoutOverflow(num_elements(), size); if (TF_PREDICT_FALSE(new_num_elements < 0)) { return errors::Internal("Encountered overflow when multiplying ", num_elements(), " with ", size, ", result: ", new_num_elements); } } ... } ``` This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. ### Patches We have patched the issue in GitHub commit [4c0ee937c0f61c4fc5f5d32d9bb4c67428012a60](https://github.com/tensorflow/tensorflow/commit/4c0ee937c0f61c4fc5f5d32d9bb4c67428012a60). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by researchers from University of Virginia and University of California, Santa Barbara.

Metadata

Created: 2021-05-21T14:26:38Z
Modified: 2024-11-13T15:59:44Z
Source: https://github.com/github/advisory-database/blob/main/advisories/github-reviewed/2021/05/GHSA-xvjm-fvxx-q3hv/GHSA-xvjm-fvxx-q3hv.json
CWE IDs: ["CWE-190"]
Alternative ID: GHSA-xvjm-fvxx-q3hv
Finding: F111
Auto approve: 1