logo

CVE-2022-21727 tensorflow

Package

Manager: pip
Name: tensorflow
Vulnerable Version: >=0 <2.5.3 || >=2.6.0 <2.6.3 || =2.7.0 || >=2.7.0 <2.7.1

Severity

Level: High

CVSS v3.1: CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H

CVSS v4.0: CVSS:4.0/AV:N/AC:L/AT:N/PR:L/UI:N/VC:L/VI:L/VA:H/SC:N/SI:N/SA:N

EPSS: 0.00329 pctl0.55268

Details

Integer overflow in Tensorflow ### Impact The [implementation of shape inference for `Dequantize`](https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L3001-L3034) is vulnerable to an integer overflow weakness: ```python import tensorflow as tf input = tf.constant([1,1],dtype=tf.qint32) @tf.function def test(): y = tf.raw_ops.Dequantize( input=input, min_range=[1.0], max_range=[10.0], mode='MIN_COMBINED', narrow_range=False, axis=2**31-1, dtype=tf.bfloat16) return y test() ``` The `axis` argument can be `-1` (the default value for the optional argument) or any other positive value at most the number of dimensions of the input. Unfortunately, the upper bound is not checked, and, since the code computes `axis + 1`, an attacker can trigger an integer overflow: ```cc int axis = -1; Status s = c->GetAttr("axis", &axis); // ... if (axis < -1) { return errors::InvalidArgument("axis should be at least -1, got ", axis); } // ... if (axis != -1) { ShapeHandle input; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), axis + 1, &input)); // ... } ``` ### Patches We have patched the issue in GitHub commit [b64638ec5ccaa77b7c1eb90958e3d85ce381f91b](https://github.com/tensorflow/tensorflow/commit/b64638ec5ccaa77b7c1eb90958e3d85ce381f91b). The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by Yu Tian of Qihoo 360 AIVul Team.

Metadata

Created: 2022-02-09T18:29:13Z
Modified: 2024-11-13T22:10:03Z
Source: https://github.com/github/advisory-database/blob/main/advisories/github-reviewed/2022/02/GHSA-c6fh-56w7-fvjw/GHSA-c6fh-56w7-fvjw.json
CWE IDs: ["CWE-190"]
Alternative ID: GHSA-c6fh-56w7-fvjw
Finding: F111
Auto approve: 1